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Abstract

This article discusses an invariant formulation for transversely isotropic hyperelasticity. The work is motivated by
the interest of modeling materials such as tendon tissues which may exhibit drastically different characteristics in tensile,
shear and volumetric responses. A multiplicative decomposition of the deformation gradient that factors out the dila-
tion and the fiber stretch is proposed. Transversely isotropic strain invariants are constructed on the basis of the mul-
tiplicative factors. Within the framework of hyperelasticity theory, these strain invariants generate decoupled stress
components in the hydrostatic pressure, the fiber tension and shear terms. An example model is suggested and is
assessed against some known features of transversely isotropic solids with strong fibers.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This work is motivated by the interest of modeling finitely deforming transversely isotropic elastic solids
that exhibit strong anisotropies in their stress response. Materials of interest include composites reinforced
with one family of strong fibers, and biological materials such as tendon or ligament tissues. The tissues in a
tendon consist of parallelly structured collagen fibers. The ligament tissue has a similar structure, but the
fibers can be less regularly aligned (Fung, 1993). In these tissues, the tensile response in the fiber direction
depends primarily on the tensile property of the collagen fibers, which are relatively strong and stiffen sig-
nificantly when subject to large stretch. On the other hand, the shear stress between fibers is determined
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mainly by the property of the ground substance that bonds the fibers and by fiber-matrix interaction. Due
to the different mechanical characteristics of the fibers and the ground substance, the material can have dis-
tinct behaviors in tension and shear motion. Within the context of hyperelastic theory, the macroscopic
description of the material response is given in terms of the strain energy functions which depend on certain
strain invariants. To effectively reflect the microstructural composition in the constitutive description, it is
desirable to use strain invariants that can register some kinematic modes for which the mechanical
responses are distinct.

In a series of papers (Criscione et al., 2001, 2002; Criscione and Hunter, 2003), Criscione and coworkers
have derived sets of strain invariants that represent succinct kinematic modes for the deformation of elastic
material with one- or two-families of fibers. In Criscione et al. (2001), a set of five strain invariants is de-
rived for transversely isotropic solids. These invariants register some distinct kinematic modes including the
dilation, the fiber stretch and two shear modes. Within the framework of hyperelasticity, these invariants
yield five stress terms in the hydrostatic pressure, the fiber tension and two shear terms, which are almost
mutually orthogonal. The orthogonality between stress components offers a unique advantage in the exper-
imental determination of the energy functions. Since the invariant approach in Criscione et al. (2001) leads
to separated stress response in the pressure, the fiber tension and the shear stresses, it can be directly used to
facilitate the physically motivated modeling interested in this work. However, these invariants, derived
from rigorous kinematic analysis, involve transcendental functions and may not be convenient in analysis.
In this work, we propose an alternative approach for constructing these physically based strain invariants.
The construction relies on a simple kinematic decomposition that factors out the dilation and the fiber
stretch only. The strain invariants so obtained also generate distinct stress components that carry clear
physically meanings for transversely isotropic solids.

The present approach is a logical extension of the isochoric/volumetric split used in the analysis of iso-
tropic solids. The decomposition was initially proposed by Flory (1961) in the analysis of rubber elasticity,
see also Ogden (1984). Physically, it is motivated by the premise that the dilation and the deviatoric re-
sponses of rubber-like materials are sustained by different mechanisms. Using separated volume and iso-
choric strains in a hyperelasticity energy function, the ensuing pressure and deviatoric stresses are
automatically decoupled, and thus allowing them to be characterized separately. Today, this formulation
has been widely used in the modeling and finite element simulation of nearly incompressible hyperelastic
materials (Simo et al., 1985; Simo and Taylor, 1991), and in particular biological tissues (Weiss et al.,
1996; Holzapfel et al., 2000). In this work, we also propose a stress computation procedure that carries over
the essential computational structure developed by Simo et al. (1985) for the isochoric/volumetric
decomposition.

The paper is organized as follows. Section 2 contains a brief background on the mathematical represen-
tation of transversely isotropic functions. In Section 3, we introduce a decomposition of the Cauchy stress
meaningful to transversely isotropic solids. A multiplicative split of the deformation gradient is discussed in
Section 4. Invariant formulations derived from the multiplicative factors are presented in Section 5, fol-
lowed by the introduction of a computational procedure for the Cauchy stress in the proposed invariant
formulation. In Section 7, we provide some assessment for an example model, the behavior of which is eval-
uated against some known features of the deformation in materials with strong fibers.
2. Continuum mechanics foundations

Amaterial is transversely isotropic if its properties are indistinguishable in all the directions transverse to
a preferred direction N in the undistorted reference configuration. For a hyperelastic solid characterized by
a strain energy function of the deformation gradient F, transverse isotropy requires that the energy function
be invariant under the symmetry transformation F! FGT, where G is any member of the transversely
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isotropic symmetry group G ¼ fG 2 Orthð3Þ : GN ¼ �Ng, here Orth(3) stands for the orthogonal group.
The requirement of invariance under superposed rigid body motions renders the strain energy a function of
the Green-Cauchy deformation tensor C = FTF. In terms of W =W(C), transverse isotropy requires
W ðCÞ ¼ W ðGCGTÞ 8G 2 G; ð1Þ
which indicates that W is a transversely isotropic scalar function of C. It is known that such a function can
be generated using the following strain invariants (Spencer, 1982)
fI1; I2; I3; I4; I5g; ð2Þ
where
I1 ¼ trC; I2 ¼
1

2
ðI21 
 trC2Þ; I3 ¼ det C; I4 ¼ C �N � N; I5 ¼ C2 �N � N.
The notation (Æ) stands for the inner product between two tensors (including two vectors), and � means
the tensor product defined by (p � q)r = p(q Æ r). In (2), I1, I2, I3 are the isotropic principal invariants of C,
while I4, I5 are two transversely isotropic strain invariants. In general, any five invariants that are in one-to-
one correspondence with (2) can serve as the basis for the energy function. The particular set (2) has been
widely used in analytical works, see Merodio and Ogden (2005) and the references therein, and is also pre-
ferred in numerical simulations since they are easy to compute. Geometrically, I1 and I2 register the average
stretches of all line and the area elements at a material point. The invariant I4 is the square stretch of the
line element tangent to the fiber direction N. As argued in Merodio and Ogden (2003), if the coordinate axis
X1 is taken to be in the fiber direction N, then I5 ¼ I4 þ C2

12 þ C2
13, indicating that I5 registers the shear

strains C12 and C13. Recently, Schröder and Neff (2003) studied the polyconvexity conditions of the strain
energy function in connection with the invariant set
I4; K1 ¼ I1 
 I4; K2 ¼ C� �N � N; K3 ¼ I2 
 K2; I3f g; ð3Þ
where C* = I3C

1 is the adjugate of C. By Nanson�s formula, the area element with normal N in the ref-

erence configuration transforms as (detF)F
TN. It follows that K2 is the square stretch of the area element
with normal N in the reference configuration. Hence, I4 and K2 single out the line and area changes in the
fiber direction. The set {trU, trU*, detU, jUNj, jU*Nj}, where U ¼

ffiffiffiffi
C

p
and U* is its adjugate, was used in

a recent work by Steigmann (2003).
A rational method for constructing anisotropic functions with certain symmetry group was developed by

Boehler (1979), see also Zheng (1994) for a survey of recent developments on this subject. Boehler proved
that an anisotropic function with a certain symmetry group can be represented as an isotropic functions
with the inclusion of suitable structural tensors in the argument list. It has been established (Boehler,
1979; Zheng and Spencer, 1993) that transverse isotropy can be characterized by a single structural tensor
A = N � N. Therefore, a transversely isotropic strain energy in terms of the deformation tensor C can be
expressed as an isotropic function in C and A, namely
W ðCÞ ¼ Ŵ ðC;AÞ : Ŵ ðC;AÞ ¼ Ŵ ðGCGT;GAGTÞ 8G 2 Orthð3Þ. ð4Þ

Using the classical isotropic representation theorems (Smith, 1971), it can be readily concluded that such

a function can be generated by the strain invariants (2) or their equivalents. For details, see Boehler (1979)
and Zheng and Spencer (1993). Similarly, a symmetric tensor-valued anisotropic function of C can be ex-
pressed as an isotropic tensor-valued function of C and A. Consequently, such a function can be generated
from the following tensorial basis (Boehler, 1979; Zheng, 1994):
fI; A; C; C2; CAþ AC; C2Aþ AC2 g. ð5Þ
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Any nontrivial invariants in the set (2) generated from a transversely isotropic tensor function of C are
transversely isotropic scalar functions of C. On the other hand, the derivative of a transversely isotropic
scalar function relative to C produces a transversely isotropic tensor function of C. These facts will be
exploited in the ensuing development.
3. An additive split of the Cauchy stress

In this section we propose a stress decomposition meaningful for transversely isotropic solids. It will be
shown that, given the current fiber direction, the Cauchy stress can be uniquely decomposed into the sum of
the hydrostatic pressure, the fiber tension and two shear terms. The decomposition is an extension of the
additive split of stress introduced by Spencer (1992) in the context of formulating yield criterion for trans-
versely isotropic materials. Spencer introduced a stress component
~r ¼ r 
 a11
 a2n � n; ð6Þ

where 1 is the second order identity tensor, and n is the fiber direction in the current configuration. (In
Spencer (1992), n was taken to coincide with N since small strain was concerned.) The component ~r is re-
quired to be deviatoric and tension free in the fiber direction, that is
tr ~r ¼ 0; n � ~rn ¼ 0. ð7Þ
These two conditions give
a1 ¼
1

2
ðtrr 
 rnÞ; a2 ¼

1

2
ð3rn 
 trrÞ; ð8Þ
where rn = r Æ n � n. Introducing the notations
a ¼ n � n; �a ¼ n � n
 1

3
1; r1 ¼

1

3
ðtrrÞ1; r2 ¼

3

2
ðr � �aÞ�a; ð9Þ
the decomposition (6) can be written as
r ¼ r1 þ r2 þ ~r. ð10Þ

Physically, r1 is the hydrostatic pressure, r2 is the deviatoric tension stress in the fiber direction.
In this work, ~r is further decomposed into two distinct shear terms. To this end, introduce
~r ¼ r3 þ r4; ð11Þ

where
r3 ¼ a~r þ ~ra; r4 ¼ ~r 
 r3. ð12Þ

Invoking (6), r3 can be expressed as
r3 ¼ ar þ ra
 2ðr � aÞa. ð13Þ

A direct computation shows that
r3n ¼ rn
 rnn. ð14Þ

This equation indicates that r3 is the shear stress cross the transverse plane, referred to as the transverse

shear hereafter. By the symmetry of the Cauchy stress, it also equals the shear stress acting along the fiber
between adjacent fibers. On the other hand, r4 satisfies
r4n ¼ 0; ð15Þ



J. Lu, L. Zhang / International Journal of Solids and Structures 42 (2005) 6015–6031 6019
which implies that r4 is a plane stress in the transverse plane, namely, only the in-plane components of r4
are nonzero. Further, since r4 is deviatoric and tension-free in the fiber direction, it satisfies the equation
r4 � ð1
 n � nÞ ¼ 0; ð16Þ

which implies that r4 represents a pure shear stress.

If the coordinates in the current configuration are chosen such that the axis x1 aligns with n, the stress
invariants defined above take the forms
½r1� ¼
r11 þ r22 þ r33

3

1 0 0

0 1 0

0 0 1

2
64

3
75; ½r2� ¼

2r11 
 r22 
 r33

3

1 0 0

0 
 1
2

0

0 0 
 1
2

2
64

3
75
and
½r3� ¼
0 r12 r13

r21 0 0

r31 0 0

2
64

3
75; ½r4� ¼

0 0 0

0 1
2
ðr22 
 r33Þ r23

0 r32
1
2
ðr33 
 r22Þ

2
64

3
75.
The fact that r4 is a pure shear stress can be readily seen from the component form. Since
(r4)22 + (r4)33 = 0, we can annihilate (r4)22 and (r4)33 simultaneously by properly rotating the coordinate
axes around n, resulting in a pure shear stress.

The proposed stress decomposition is facilitated by (10) and (11). The uniqueness of the decomposition
follows by construction. An important property of this decomposition lies in that the stress terms are mutu-
ally orthogonal. To show the orthogonality, we write the decomposition in terms of stress projections:
ri ¼ Pir; i ¼ 1; 2; 3; 4; ð17Þ

where the operation is defined in component by ðriÞpq ¼ ½Pi�pqstrst, and
P1 ¼
1

3
1 � 1;

P2 ¼
3

2
�a � �a;

P3 ¼ 1 � aþ a � 1
 2a � a;

P4 ¼ I
 1

3
1 � 1
 3

2
�a � �aþ 2a � a
 1 � a
 a � 1.

ð18Þ
Here, I is the fourth order identity tensor, and > stands for the Kronecker product of second order ten-
sors defined by
ðU � VÞðu � vÞ ¼ ðUuÞ � ðVvÞ 8 vectors u; v. ð19Þ

A complete account of the properties of the Kronecker product can be found in the classical monograph

of Murnaghan (1938). Here, we record only the multiplication rule (U> V)(X> Y) = (UX)> (VY),
which is needed in verifying the orthogonality condition stated below. Using this rule and the fact that
tra = n Æ n = 1, one can readily check that
PiPi ¼ Pi ði ¼ 1; 2; 3; 4Þ; PiPj ¼ O ði 6¼ jÞ; ð20Þ
where O is the fourth-order zero tensor. Hence, Pi are identified as orthogonal projectors. It follows that the
terms r1 through r4 are mutually orthogonal, as
ri � rj ¼ Pir½ � � Pjr
� 	

¼ r � PiPjr ¼ 0 ði 6¼ jÞ; ð21Þ
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where the symmetry ½Pi�pqst ¼ ½Pi�stpq is used. In addition, it is evident that
P1 þ P2 þ P3 þ P4 ¼ I. ð22Þ

Therefore, by virtue of these projections, the stress space S is decomposed into the direct sum of four

subspaces, as
S ¼ S1 �S2 �S3 �S4 where Si ¼ fs : Pis ¼ sg; i ¼ 1; 2; 3; 4. ð23Þ

Physically, S1 through S4 correspond to the spaces of the hydrostatic pressure, the deviatoric fiber ten-

sion, the transverse shear and the in-plane shear, respectively.
4. A multiplicative split of the deformation gradient

The construction of strain measures starts with the introduction of a multiplicative decomposition of the
deformation gradient that factors out the volumetric strain and the fiber stretch. The split is an extension of
the isochoric/volumetric decomposition widely used in the analysis of isotropic hyperelastic solids (Flory,
1961; Ogden, 1984; Simo et al., 1985; Simo and Taylor, 1991). It will be shown that, within the framework
of hyperelasticity, the multiplicative factors correspond naturally (in sense of work-conjugancy) to the
stress decomposition introduced in the previous section.

Let n be the fiber direction in the current configuration, given by the standard formula
n ¼ 1

k
FN; k2 ¼ FN � FN; ð24Þ
where k is the stretch of the line element along the fiber direction N, k ¼
ffiffiffiffi
I4

p
. Consider a decomposition of

the deformation gradient in the form
F ¼ J
1
3ða1þ bn � nÞ~F; ð25Þ
where J ¼ det F ¼
ffiffiffiffi
I3

p
. From (25),
~F ¼ J
1
3ða1þ bn � nÞ
1

F. ð26Þ

We require that ~F to be isochoric and stretch-free in the fiber direction, namely
det ~F ¼ 1; k~FNk ¼ 1. ð27Þ

Making use of Eq. (24) and the relations
ða1þ bn � nÞ
1 ¼ a
1ð1
 n � nÞ þ ða þ bÞ
1
n � n;

det ða1þ bn � nÞ ¼ a2ða þ bÞ;
ð28Þ
we can write the conditions (27) as
a2ða þ bÞ ¼ 1; a þ b ¼ �k; ð29Þ

where �k ¼ J
1

3k, which is an isochoric measure of the fiber stretch. It can be readily found that
a ¼ �k

1

2; b ¼ �k 
 �k

1

2. ð30Þ

Therefore,
~F ¼ �k
1
2ð1
 n � nÞ þ �k


1
n � n

h i
J
1

3F. ð31Þ



J. Lu, L. Zhang / International Journal of Solids and Structures 42 (2005) 6015–6031 6021
The factor ~F represents a local motion composed of an isochoric deformation superposed by a simple
compression in the fiber direction such that the ensuing fiber stretch is unity. Further insight into the nature
of ~F can be gained by examining its rate. Invoking the standard results
_k ¼ ok
oC

� _C ¼ ka � d; _J ¼ J trd; _n ¼ Ln
 ðd � aÞn; ð32Þ
where L ¼ _FF
1 is the velocity gradient and d = 1/2(L + LT) is the rate of deformation tensor, a straight
forward derivation yields
~L � _~F~F

1 ¼ L
 1

3
ðd � 1Þ1
 3

2
ðd � �aÞ�aþ 2ð�k
3

2 
 1Þ ad
 ðd � aÞa½ �. ð33Þ
Hence,
~d � 1

2
ð~Lþ ~L

TÞ ¼ P4 þ �k

3

2P3

h i
d ¼ Pd; where P � P4 þ �k


3
2P3. ð34Þ
Recalling the orthogonality of the projectors, one sees
~d � 1 ¼ 0; ~d � a ¼ 0; ð35Þ

namely, the spatial rate of ~F is deviatoric and stretch-free in the fiber direction. As will become evident
shortly afterwards, these conditions imply that the Cauchy stress generated by ~F is work-conjugate to
the transverse shear and the in-plane shear stress.
5. Constitutive formulation

5.1. Strain invariants

Transversely isotropic strain invariants are constructed with the aid of the multiplicative split introduced
in the previous section. Since J and �k can be naturally identified as two strain invariants, it makes sense to
start with the energy function of the form W ¼ �W ðJ ; �k; ~FÞ. Under superposed rigid motion F ! QF, J and �k
remain invariant while ~F transforms as ~F ! Q~F. The classical requirement of invariance under superposed
rigid body motions renders the reduction
W ¼ ~W ðJ ; �k; ~CÞ; ð36Þ

where ~C ¼ ~F

T~F. From (31),
~C ¼ J
2
3 �kCþ ð�k
2 
 �kÞ 1

k2
CN � NC

� 

. ð37Þ
Evidently, ~C is a transversely isotropic tensor function of C. Therefore, any invariants in the set (2) gen-
erated by ~C are transversely isotropic scalar functions of C. However, since
I3ð~CÞ ¼ det ~C ¼ ðdet ~FÞ2 ¼ 1; I4ð~CÞ ¼ ~C �N � N ¼ ~FN � ~FN ¼ 1 ð38Þ

only the following three invariants of ~C are nontrivial and are suitable for basis functions:
fI1ð~CÞ; I2ð~CÞ; I5ð~CÞg. ð39Þ

Let {b1, b2, b3} be any three invariants that are in one-to-one correspondence with the nontrivial invar-

iants (39). Combining with J and �k, the invariants
fJ ; �k; b1; b2; b3g ð40Þ

furnish a set of basis functions.
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5.2. Orthogonality between stress terms

The proposed invariant formulation enjoys the property that the ensuing stress is automatically decom-
posed into the pressure, the deviatoric fiber tension, and the shear terms. To show this, we start from the
energy form (36). Denoted by r the Cauchy stress, by virtue of the balance of mechanical power we have,
Jr � d ¼ _~W ¼ o ~W
oJ

J1 � dþ o ~W

o�k
�k�a � dþ o ~W

o~C
� _~C; ð41Þ
where the rate relations in (32) are utilized. Let ~r be the stress component generated by ~C, namely,
J~r � d ¼ o ~W

o~C
� _~C, we then write
r ¼ o ~W
oJ

1þ
�k
J
o ~W

o�k
�aþ ~r. ð42Þ
Evidently,
o ~W
oJ

1 2 S1;
�k
J
o ~W

o�k
�a 2 S2. ð43Þ
Notice
_~C ¼ _~F
T
~Fþ ~F

T _~F ¼ ~F
T
2~d
� 	

~F ¼ ~F
T
2Pd½ �~F;
where (34) is used. It is clear that
J~r � d ¼ o ~W

o~C
� _~C ¼ o ~W

o~C
� ~FT

2Pd½ �~F ¼ P 2~F
o ~W

o~C
~F
T

� 

� d 8d; ð44Þ
where the symmetry of P is used. Therefore
~r ¼ 1

J
P 2~F

o ~W

o~C
~F
T

� 

) ~r 2 S3 �S4. ð45Þ
This proves that the stress term conjugate to ~C corresponds to a combination of the transverse and the
in-plane shear.

It is possible to construct basis functions bi such that the stress terms ~r is further decoupled. As an exam-
ple, consider the following set of invariants
b1 ¼ ~C
2 �N � N; b2 ¼ tr ~C


1 
 ~C

1 �N � N; b3 ¼ tr ~C


1
. ð46Þ
Evidently, b1 ¼ I5ð~CÞ. Since det ~C ¼ 1, we identify that b3 ¼ I2ð~CÞ and ~C

1 �N � N ¼ K2ð~CÞ. It follows

that b2 ¼ K3ð~CÞ. These invariants therefore carry the geometrical meaning identified before, but applied to
the deformation factor ~F. We can use the Cayley–Hamilton theorem and the unity conditions (38) to obtain
an alternative expression b2 ¼ tr ~C
 ~C

2 �N � N. With the aid of (37) and the expression
~C

1 ¼ J

2
3�k


1
C
1 þ ð1
 �k


3ÞN � N; ð47Þ
we can write the invariants (46) explicitly as
b1 ¼
1

k4
C2 �N � N; b2 ¼

k
J
trC
 1

Jk
C2 �N � N; b3 ¼

J
k
trC
1 
 J

k3
. ð48Þ
With an energy form
W ¼ �W ðJ ; �k; b1; b2; b3Þ; ð49Þ
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the Cauchy stress function is given as
r ¼ o �W
oJ

1þ
�k
J
o �W

o�k
�aþ 2

J

X3

i¼1

o �W
obi

F
dbi

dC
FT. ð50Þ
A straightforward calculation yields,
2F
ob1

oC
FT ¼ 2

k2
baþ ab
 2ða � bÞa½ �;

2F
ob2

oC
FT ¼ k

J
2b
 2ba
 2abþ 2ðb � aÞa
 ðtrb
 b � aÞð1
 aÞ½ �.

ð51Þ
Here, b = FFT is the (inverse) Finger tensor. Evidently,
2F
ob1

oC
FT ¼ 2

k2
P3½b� 2 S3; 2F

ob2

oC
FT ¼ 2k

J
P4½b� 2 S4.
One sees that b1, b2 generate a transverse shear and an in-plane shear, respectively. Consequently, the
stress terms generated by J, �k, b1, b2 are mutually orthogonal. The stress term by b3 contains both in-plane
and transverse shear terms. This can be verified by direct computation. Using the relations trC
1 = trb
1,
b
1 Æ a = k
2 and C
1 Æ N � N = k2b
2 Æ a, taking the derivative of b3 with respect to C and push-forward-
ing the result into Eulerian form yields,
2F
ob3

oC
FT ¼ J

k
ð
2b
1 þ ðtrb
1 
 b
1 � aÞ1þ ð3b
1 � a
 trb
1ÞaÞ
� 	

. ð52Þ
It can be directly verify that
2F
ob3

oC
FT ¼ 
 2J

k
P3½b
1� þ P4½b
1�
� 	

2 S3 �S4.
Hence, the fifth stress term is coupled with the third and fourth stress terms.
In passing, it is noted that the invariants b1 and b2 are formally equivalent to the following two strain

invariants deduced by Criscione et al. (2001, p. 883)
�b3 ¼ log
I1I4 
 I5
2

ffiffiffiffiffiffiffiffi
I3I4

p
� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1I4 
 I5
2

ffiffiffiffiffiffiffiffi
I3I4

p
� �2


 1

s0
@

1
A; �b4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I5
I24


 1

s
.

Evidently,
�b3 ¼ log
b2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2

� �2


 1

s0
@

1
A; �b4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 
 1

p
.

The last invariant deduced by Criscione registers the angle between the planes of the transverse shear and
the in-plane shear. It is anticipated that such an invariant can be constructed from ~C. This line of thinking,
however, is not explored here.
6. Projection formulae

Although the energy function is commonly defined in terms of invariants, from the perspective of com-
putation, it is convenient to express the stress collectively in terms ~C (and J, �k). This situation is similar to
the numerical treatment of isochoric/volumetric split, where the stress contribution from the isochoric
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factor is conveniently computed by means of a deviatoric projection (Simo et al., 1985). A similar procedure
is developed here.

Starting from the energy function (36), introduce the notations
~S ¼ 2
o ~W

o~C
; ~s ¼ ~F~S~F

T
. ð53Þ
As we have already shown in (42) and (45), the Cauchy stress takes the form
r ¼ o ~W
oJ

1þ
�k
J
o ~W

o�k
�aþ 1

J
P~s. ð54Þ
We are primarily interested in the stress term associated with ~C. From (54), it is clear that the contribu-
tion can be computed using the following procedure: First, the factor ~F is employed to compute an auxiliary
stress ~s in the same manner as the Kirchhoff stress is computed from the deformation gradient. Then, the
stress ~s is projected to the appropriate stress space to yield the contribution to the Cauchy stress.

The material tangent tensors can be computed directly with the application of the chain rule. Without
loss of generality, consider the case of decoupled energy function defined by
W ¼ V ð~CÞ þ UðJÞ þ Kð�kÞ; ð55Þ

with the second Piola Kirchhoff stress given by
S ¼ o~C

oC

" #T

2
oV

o~C

� �
þ JU 0ðJÞC
1 þ �kK 0ð�kÞ 1

k2
N � N
 1

3
C
1

� 

. ð56Þ
The referential material tangent tensor is given by the second derivative
D ¼ 4
o
2W

oCoC

¼ o~C

oC

" #T

4
o2V

o~Co~C

� �
o~C

oC

" #
þ 4

o2 ~C

oCoC

" #T
oV

o~C

� �
þ 4K 00ð�kÞ o

�k
oC

� o�k
oC

þ 4U 00ðJÞ oJ
oC

� oJ
oC

þ 4K 0ð�kÞ o2�k
oCoC

þ 4U 0ðJÞ o2J
oCoC

. ð57Þ
The contributions from ~C appear in the first two terms in the right-hand-side of (57). The first term re-
lates to the second derivative of the energy function. The second term, linear in stress, arises from the non-
linearity of the tensor ~C. The explicit expressions for the fourth order transformation tensor o~C

oC
and the

higher order transformation o2 ~C
oCo~C

are given in Appendix A.
The Eulerian tangent tensor associated with ~C retains a more tractable form. Let C be the spatial tangent

tensor related to D by the push-forward relation
C ¼ 1

J
FDFT () Cijkl ¼ 1

J
F i

IF
j
JD

IJKLF k
KF

l
L.
Let
~C ¼ 4

J
~F

o2V

o~Co~C
~F
T () ~C

ijkl ¼ 4

J
~F
i

I
~F
j

J

o2V

o~CIJo~CKL

~F
k

K
~F
l

L ð58Þ
and denote ~sn ¼ ~s � n � n. After a lengthy but straight forward computation, it is shown that the contri-
bution from ~C (namely, the pushforward of the first two terms in (57)) takes the form
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C ¼ P~CPþ ðtr~s 
 ~snÞ P4 þ �k

3
P3

h i

 P4ð~sÞ � ð1
 aÞ þ ð1
 aÞ � P4ð~sÞ½ �

þ 2ð�k
3 
 1Þ a � P4ð~sÞ þ P4ð~sÞ � a½ � 
 2�k

3

2 a � P3ð~sÞ þ P3ð~sÞ � a½ �. ð59Þ
It is clear that once ~C and ~s are obtained, the tangent tensor can be computed by means of projections
and transformations. This procedure carries over the computational structure developed by Simo et al.
(1985) for the treatment of the isochoric/volumetric decomposition.
7. An example model

To provide some assessments of this constitutive approach, we consider a model with additive energy
function
W ðCÞ ¼ k2 expðcð�k 
 1Þ2Þ þ 1

2
k3ðb1 
 1Þ þ 1

2
k4ðb2 
 2Þ ð60Þ
with b1 and b2 defined as in (46). We are primarily interested in assessing the predictability in modeling
materials with distinct characteristics in the fiber tension and in the transverse and in-plane shear. For this
reason, an exponential form is used for the fiber stretch, whereas polynomials are used for the other terms.
The material is assumed to be incompressible, hence the energy function (60) determines the Cauchy stress
to within a hydrostatic pressure. For numerical simulation the model is implemented in the nonlinear finite
element program FEAP originally developed by Taylor (Zienkiewicz and Taylor, 1991). In the finite ele-
ment simulation, a penalty term 1

2
k1ðJ 
 1Þ2 is added to the energy function, with k1 setting to 10000k3.

The incompressibility constraint is further treated by a mixed formulation for the volume/pressure fields
and an augmented Lagrangian method, as described in Simo and Taylor (1991).
7.1. Uniaxial tension

Consider the uniaxial tension of a block in which the tensile load is applied along one of its axes. Let the
motion be described by xi = kiXi, i = 1,2,3 where the coordinate X1 is in the loading direction. In the first
case, consider the fiber aligned in the load direction, so that X2 and X3 are in the isotropic plane. Due to
material symmetry, we have k2 = k3 in this motion. A direct computation shows
�k ¼ k
2
3
1k


2
3

2 ; b1 ¼ 1; b2 ¼ 2.
Notably the invariants b1 and b2 are constants. The incompressibility condition k1k2k3 = 1 further gives
�k ¼ k1 and k2 ¼ k3 ¼ k


1
2

1 . The stress function can be derived using (60), (50) and (51). Upon imposing the
incompressibility condition, the stress components are given by
r11 ¼
4

3
k2c expðcðk1 
 1Þ2Þk1ðk1 
 1Þ þ p;

r22 ¼ r33 ¼ 
 2

3
k2c expðcðk1 
 1Þ2Þk1ðk1 
 1Þ þ p;
where p is the pressure. Using the equilibrium condition r22 = 0 to eliminate the pressure we obtain the
axial stress
r11 ¼ 2k2c expðcðk1 
 1Þ2Þk1ðk1 
 1Þ
which notably depends only on the first term of the energy function.
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If the load is applied at 90� to the fiber, and if we let X2 be in the fiber direction (namely [N] = [010]), we
find
b1 ¼ 1; b2 ¼
k1

k3

þ k3

k1

.

In this case the stress components are found to be
r11 ¼ 
 1

3
k2c expðcð�k2 
 1Þ2Þ�k2ð�k2 
 1Þ þ k4

2

k1

k3


 k3

k1

� �
þ p;

r22 ¼
2

3
k2c expðcð�k2 
 1Þ2Þ�k2ð�k2 
 1Þ þ p;

r33 ¼ 
 1

3
k2c expðcð�k2 
 1Þ2Þ�k2ð�k2 
 1Þ 
 k4

2

k1

k3


 k3

k1

� �
þ p;
where p is the pressure. Eliminating p and the exponential term by the equilibrium conditions r22 = r33 = 0,
we find
r11 ¼ k4
k1

k3


 k3

k1

� �
;

where, given the axial stretch k1, the lateral stretch k3 together with k2 are determined by r22 = r33 = 0 and
the incompressibility condition.

The two tension curves are depicted in Fig. 1. Finite element simulations of these two tests are also con-
ducted. The curves clearly show an exponential behavior for the first case and a nearly linear response in the
second case. In these simulation the following parameters are used:
k2 ¼ 1.35� 103 KPa; k3 ¼ 135 KPa; k4 ¼ 135 KPa; c ¼ 1.
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Fig. 1. Uniaxial tension: the axial stress versus the stretch.
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7.2. Inextensible beam

Some peculiar deformations of transversely isotropic solids have been reported in the literature. Pipkin
studied the planar deformation in materials reinforced with inextensible fibers (Pipkin, 1974, 1977). If the
material is also incompressible, the motion, if all possible, may be determined by kinematic analysis alone.
Particularly, if a cantilever beam with fibers parallel to the beam length is loaded transversely as shown in
Fig. 2, the beam deforms by shear rather than by bending, because it can only sustain motions that are
locally a pure shear along the fiber direction. The shear deformation is independent of the length of the
beam and the distance along the beam where the load is applied.

This phenomenon is replicated numerically using the suggested constitutive model. A cantilever beam of
length L = 15 in. height H = 1 in. is subjected to a transverse load P = 5 lbs, applied at 2/3L from the fixed
end. The material is assumed nearly inextensible in the longitudinal direction with the following
parameters:
k2 ¼ 107 Psi; k3 ¼ 25 Psi; k4 ¼ 25 Psi; c ¼ 1.
The deformed configuration is depicted in Fig. 2. It is evident that the beam undergoes transverse shear
motion except for in the region close to the clamped end and in the transition region near the load. The
portion of beam between the load and the free end remains horizontal with zero shear stress.

Following Pipkin (1974), in the analytical solution we parameterize the local motion in terms of a pure
shear in the form
F ¼ n � Nþ ðjnþmÞ � M;
where N and n are the tangents of the fiber line in the reference and current configurations, M and m are the
corresponding normals, and j is the amount of shear that varies with position. It follows that b1 = j2 + 1
and b2 = 2. Using the energy form (60) and invoking the relation (51)1, the transverse shear stress is found
to depend linearly on j, the magnitude of which is given by
s ¼ k3j.
In this case there is an analytical relation relating the deflection of the beam tip to the applied load
(Pipkin, 1974). The force-deflection curve obtained by the finite element analysis is plotted in Fig. 3, and
is found to agree with the theoretical prediction. It appears that the current model allows to sharply single
out the transverse shear mode, and thus to capture the essential feature of the motion.

7.3. Torsion of hollow cylinders

Torsion of hyperelastic cylinders is a classical problem that has been extensively studied. It is known that
hyperelastic cylinders do not sustain pure torsion in general, except for few material models, see Polignone
P
Reference configuration

Current configuration

Fig. 2. Inextensible cantilever beam under transverse load: deflecting by shearing.
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and Horgan (1991) and the references therein. For the transversely isotropic material model considered
here, the torsion patterns are expected to be quite different for cylinders with different fiber orientations.
In particular, pure torsion is expected when the material is inextensible in the circumferential direction.
A thin-walled tube with length 5 cm, outside diameter 2 cm and wall thickness 0.1 cm is considered. The
tube is clamped at one end and subjected to a torque at the free end, and is allowed to shorten in the axial
direction. Material parameters are taken to be
k2 ¼ 106 KPa; k3 ¼ 135 KPa; k4 ¼ 135 KPa; c ¼ 1.
Two different fiber-orientations are considered. In the first case, the fiber is placed along circumferential
direction, while in the second case the fiber is assumed to be parallel to the cylinder length. The deformed
configurations are depicted in Fig. 4. Clearly, pure torsion type of deformation is observed for the first case.
In contrast, lateral contraction similar to what observed for neo-Hookean solids occurs in the second case.
In addition, substantial amount of longitudinal shortening (due to fiber inextensibility) is observed in this
case.
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8. Concluding remarks

We discussed a constitutive formulation for transversely isotropic hyperelastic solids that may exhibit
drastically different characteristics in different modes of deformation. The formulation is a logical extension
of the isochoric/deviatoric decomposition used in the analysis of isotropic materials. We developed a simple
multiplicative decomposition of deformation gradient, based on which a family of strain invariants that
generate decoupled pressure, fiber tension and shear stresses are deduced. This framework is expected to
be useful in numerical modeling of nearly incompressible and inextensible materials.
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Appendix A. Transformation tensor

In this Appendix we derive the transformation tensor o~C
oC

and its derivative. Starting from (37), we have
oC ~C
� 	T~S ¼ k

J
~Sþ 1

2Jk
N � N
 k

2J
C
1

� 

ðC � ~SÞ þ 
 2

k2
þ k
2J

� �
N � Nþ k3

2J
C
1

� 


� 1

k4
ðCN � NC � ~SÞ þ 1

k4

 1

Jk

� �
~SCN � NþN � NC~S
� 	

ð61Þ
for any fixed second order tensor ~S. Making use of the following identities
F~SFT ¼ J
2
3�k


1 ~F~S~F
T þ ð�k

3
2 
 1ÞP4ð~F~S~F

TÞ þ ð�k3 
 1Þð~F~S~FT � aÞa
h i

;

F~SFTaþ aF~SFT ¼ J
2
3 �k

1
2P4ð~F~S~F

TÞ þ 2�k
2ð~F~S~FT � aÞa

h i
;

ð62Þ
one can deduce that
F oC ~C
� 	T~Sh i

FT ¼ P ~F~S~F
T

h i

which gives the formula (45). Moreover, taking derivative of the transformation (61) (assuming ~S fixed)
yields,
o2CC
~C

� 	T~S � o

oC
½oC ~C�T~S
h i

¼ ~S � 1

2Jk
N � N
 k

2J
C
1

� �
þ 1

2Jk
N � N
 k

2J
C
1

� �
� ~S

þ 
 1

4Jk3
C � ~Sþ 6

k8

 3

4Jk5

� �
CN � NC � ~S

� �
N � N � N � N


 1

4Jk
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4Jk3
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N � N � C
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1 � N � N
� 	

þ k
4J

C � ~S
 1

4Jk
CN � NC � ~S

� �
2IC
1 þ C
1 � C
1
� 	
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þ 1
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2Jk
C
1
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 2
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þ 1

2Jk3

� �
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2Jk
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� 
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� 	
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k4

 1

Jk

� �
~S � ðN � NÞ þ ðN � NÞ � ~S
� 	

. ð63Þ
Here, IC
1 is the pull-back of the Eulerian fourth order identity tensor; in components,
½IC
1 �IJKL ¼ 1

2
ð½C
1�IK ½C
1�JL þ ½C
1�IL½C
1�JKÞ. Pushing-forward the right hand side of (63) and collecting

terms yields the Eulerian form reported in (59).
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