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Abstract

This article discusses an invariant formulation for transversely isotropic hyperelasticity. The work is motivated by
the interest of modeling materials such as tendon tissues which may exhibit drastically different characteristics in tensile,
shear and volumetric responses. A multiplicative decomposition of the deformation gradient that factors out the dila-
tion and the fiber stretch is proposed. Transversely isotropic strain invariants are constructed on the basis of the mul-
tiplicative factors. Within the framework of hyperelasticity theory, these strain invariants generate decoupled stress
components in the hydrostatic pressure, the fiber tension and shear terms. An example model is suggested and is
assessed against some known features of transversely isotropic solids with strong fibers.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This work is motivated by the interest of modeling finitely deforming transversely isotropic elastic solids
that exhibit strong anisotropies in their stress response. Materials of interest include composites reinforced
with one family of strong fibers, and biological materials such as tendon or ligament tissues. The tissues in a
tendon consist of parallelly structured collagen fibers. The ligament tissue has a similar structure, but the
fibers can be less regularly aligned (Fung, 1993). In these tissues, the tensile response in the fiber direction
depends primarily on the tensile property of the collagen fibers, which are relatively strong and stiffen sig-
nificantly when subject to large stretch. On the other hand, the shear stress between fibers is determined
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mainly by the property of the ground substance that bonds the fibers and by fiber-matrix interaction. Due
to the different mechanical characteristics of the fibers and the ground substance, the material can have dis-
tinct behaviors in tension and shear motion. Within the context of hyperelastic theory, the macroscopic
description of the material response is given in terms of the strain energy functions which depend on certain
strain invariants. To effectively reflect the microstructural composition in the constitutive description, it is
desirable to use strain invariants that can register some kinematic modes for which the mechanical
responses are distinct.

In a series of papers (Criscione et al., 2001, 2002; Criscione and Hunter, 2003), Criscione and coworkers
have derived sets of strain invariants that represent succinct kinematic modes for the deformation of elastic
material with one- or two-families of fibers. In Criscione et al. (2001), a set of five strain invariants is de-
rived for transversely isotropic solids. These invariants register some distinct kinematic modes including the
dilation, the fiber stretch and two shear modes. Within the framework of hyperelasticity, these invariants
yield five stress terms in the hydrostatic pressure, the fiber tension and two shear terms, which are almost
mutually orthogonal. The orthogonality between stress components offers a unique advantage in the exper-
imental determination of the energy functions. Since the invariant approach in Criscione et al. (2001) leads
to separated stress response in the pressure, the fiber tension and the shear stresses, it can be directly used to
facilitate the physically motivated modeling interested in this work. However, these invariants, derived
from rigorous kinematic analysis, involve transcendental functions and may not be convenient in analysis.
In this work, we propose an alternative approach for constructing these physically based strain invariants.
The construction relies on a simple kinematic decomposition that factors out the dilation and the fiber
stretch only. The strain invariants so obtained also generate distinct stress components that carry clear
physically meanings for transversely isotropic solids.

The present approach is a logical extension of the isochoric/volumetric split used in the analysis of iso-
tropic solids. The decomposition was initially proposed by Flory (1961) in the analysis of rubber elasticity,
see also Ogden (1984). Physically, it is motivated by the premise that the dilation and the deviatoric re-
sponses of rubber-like materials are sustained by different mechanisms. Using separated volume and iso-
choric strains in a hyperelasticity energy function, the ensuing pressure and deviatoric stresses are
automatically decoupled, and thus allowing them to be characterized separately. Today, this formulation
has been widely used in the modeling and finite element simulation of nearly incompressible hyperelastic
materials (Simo et al., 1985; Simo and Taylor, 1991), and in particular biological tissues (Weiss et al.,
1996; Holzapfel et al., 2000). In this work, we also propose a stress computation procedure that carries over
the essential computational structure developed by Simo et al. (1985) for the isochoric/volumetric
decomposition.

The paper is organized as follows. Section 2 contains a brief background on the mathematical represen-
tation of transversely isotropic functions. In Section 3, we introduce a decomposition of the Cauchy stress
meaningful to transversely isotropic solids. A multiplicative split of the deformation gradient is discussed in
Section 4. Invariant formulations derived from the multiplicative factors are presented in Section 5, fol-
lowed by the introduction of a computational procedure for the Cauchy stress in the proposed invariant
formulation. In Section 7, we provide some assessment for an example model, the behavior of which is eval-
uated against some known features of the deformation in materials with strong fibers.

2. Continuum mechanics foundations

A material is transversely isotropic if its properties are indistinguishable in all the directions transverse to
a preferred direction N in the undistorted reference configuration. For a hyperelastic solid characterized by
a strain energy function of the deformation gradient F, transverse isotropy requires that the energy function
be invariant under the symmetry transformation F — FG', where G is any member of the transversely
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isotropic symmetry group ¥ = {G € Orth(3) : GN = £N}, here Orth(3) stands for the orthogonal group.
The requirement of invariance under superposed rigid body motions renders the strain energy a function of
the Green-Cauchy deformation tensor C = F'F. In terms of W = W/(C), transverse isotropy requires

w(C) = W(GCG") VG c 9, (1)

which indicates that W is a transversely isotropic scalar function of C. It is known that such a function can
be generated using the following strain invariants (Spencer, 1982)

{117 127 137 [47 15}7 (2)

where

I, = trC, Izzé(lf—trCz), I;=detC, I,=C-N®N, I5=C>-N® N.

The notation (-) stands for the inner product between two tensors (including two vectors), and ® means
the tensor product defined by (p ® q)r = p(q ‘' r). In (2), I}, I, I3 are the isotropic principal invariants of C,
while Iy, I5 are two transversely isotropic strain invariants. In general, any five invariants that are in one-to-
one correspondence with (2) can serve as the basis for the energy function. The particular set (2) has been
widely used in analytical works, see Merodio and Ogden (2005) and the references therein, and is also pre-
ferred in numerical simulations since they are easy to compute. Geometrically, I; and I, register the average
stretches of all line and the area elements at a material point. The invariant I, is the square stretch of the
line element tangent to the fiber direction N. As argued in Merodio and Ogden (2003), if the coordinate axis
X, is taken to be in the fiber direction N, then /s =1, + C?z + Cf3, indicating that I5 registers the shear
strains Cj, and Cj;. Recently, Schréder and Neff (2003) studied the polyconvexity conditions of the strain
energy function in connection with the invariant set

{Is, Ki=1 -1, K;=C"-N® N, K3=10I-K,, I3}, (3)

where C* = I,C ! is the adjugate of C. By Nanson’s formula, the area element with normal N in the ref-
erence configuration transforms as (det F)F~TN. It follows that K, is the square stretch of the area element
with normal N in the reference configuration. Hence, I; and K, single out the line and area changes in the
fiber direction. The set {trU, trU*, detU, |[UN|, [U*N|}, where U = v/C and U* is its adjugate, was used in
a recent work by Steigmann (2003).

A rational method for constructing anisotropic functions with certain symmetry group was developed by
Boehler (1979), see also Zheng (1994) for a survey of recent developments on this subject. Boehler proved
that an anisotropic function with a certain symmetry group can be represented as an isotropic functions
with the inclusion of suitable structural tensors in the argument list. It has been established (Boehler,
1979; Zheng and Spencer, 1993) that transverse isotropy can be characterized by a single structural tensor
A =N ® N. Therefore, a transversely isotropic strain energy in terms of the deformation tensor C can be
expressed as an isotropic function in C and A, namely

W(C)=W(C,A): W(C,A)=W(GCG",GAG") VG € Orth(3). 4)

Using the classical isotropic representation theorems (Smith, 1971), it can be readily concluded that such
a function can be generated by the strain invariants (2) or their equivalents. For details, see Boehler (1979)
and Zheng and Spencer (1993). Similarly, a symmetric tensor-valued anisotropic function of C can be ex-
pressed as an isotropic tensor-valued function of C and A. Consequently, such a function can be generated
from the following tensorial basis (Boehler, 1979; Zheng, 1994):

{I, A, C, C*, CA+AC, C°A+AC* }. (5)
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Any nontrivial invariants in the set (2) generated from a transversely isotropic tensor function of C are
transversely isotropic scalar functions of C. On the other hand, the derivative of a transversely isotropic
scalar function relative to C produces a transversely isotropic tensor function of C. These facts will be
exploited in the ensuing development.

3. An additive split of the Cauchy stress

In this section we propose a stress decomposition meaningful for transversely isotropic solids. It will be
shown that, given the current fiber direction, the Cauchy stress can be uniquely decomposed into the sum of
the hydrostatic pressure, the fiber tension and two shear terms. The decomposition is an extension of the
additive split of stress introduced by Spencer (1992) in the context of formulating yield criterion for trans-
versely isotropic materials. Spencer introduced a stress component

6=06—oul—own ® n, (6)

where 1 is the second order identity tensor, and n is the fiber direction in the current configuration. (In
Spencer (1992), n was taken to coincide with N since small strain was concerned.) The component & is re-
quired to be deviatoric and tension free in the fiber direction, that is

tre =0, n-on=0. (7)
These two conditions give
o = %(tra —0,), o= %(30,1 —tra), (8)

where 6, = ¢ ' n ® n. Introducing the notations

1 1 3
a=nQ® n, ﬁ:n@n—gl, G']Zg(tra)l, 02:5(0 a)a, 9)
the decomposition (6) can be written as
6 =0,+0,+0. (10)

Physically, o, is the hydrostatic pressure, o, is the deviatoric tension stress in the fiber direction.
In this work, & is further decomposed into two distinct shear terms. To this end, introduce

6= 03 + 0y, (11)
where
03:a&+&a, 64:&763. (12)

Invoking (6), 63 can be expressed as

6;=ac+o0a—2(c-a)a. (13)
A direct computation shows that
630 = on — g,Nn. (14)

This equation indicates that o5 is the shear stress cross the transverse plane, referred to as the transverse
shear hereafter. By the symmetry of the Cauchy stress, it also equals the shear stress acting along the fiber
between adjacent fibers. On the other hand, o4 satisfies

0'4[120, (15)
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which implies that a4 is a plane stress in the transverse plane, namely, only the in-plane components of 64
are nonzero. Further, since 64 is deviatoric and tension-free in the fiber direction, it satisfies the equation

6;,-(1—-n ® n)=0, (16)
which implies that 6,4 represents a pure shear stress.

If the coordinates in the current configuration are chosen such that the axis x; aligns with n, the stress
invariants defined above take the forms

1 0 0 1 0 0
[Gl]zw 01 0], [gz]zw 0 -1 0
0 0 1 0 0 _%
and
0 o on 0 0 0
3] =0 0 0 |, (64 = |0 1(022—033) 023
oy 0 0 0 03 5(033 — 022)

The fact that 64 is a pure shear stress can be readily seen from the component form. Since
(04)22 + (04)33 = 0, we can annihilate (o4)2, and (o4)33 simultaneously by properly rotating the coordinate
axes around n, resulting in a pure shear stress.

The proposed stress decomposition is facilitated by (10) and (11). The uniqueness of the decomposition
follows by construction. An important property of this decomposition lies in that the stress terms are mutu-
ally orthogonal. To show the orthogonality, we write the decomposition in terms of stress projections:

6;=Po, i=1,234, (17)
where the operation is defined in component by (a,-)pq = [Pi]pqsto-sta and
1
Pl :gl ® 1,
3
P, — 32 _
2TareR (18)

P;=1Ka+alK1l-2a ® a,

1
[|3’4:|]—§1 ® 1—%2‘1 ®a+2a® a—1Xa—akKl.
Here, [ is the fourth order identity tensor, and X stands for the Kronecker product of second order ten-
sors defined by
(UXV)(u ® v) = (Uu) ® (Vv) V vectors u,v. (19)

A complete account of the properties of the Kronecker product can be found in the classical monograph
of Murnaghan (1938). Here, we record only the multiplication rule (UK V)X X Y) = (UX) X (VY),
which is needed in verifying the orthogonality condition stated below. Using this rule and the fact that
tra=n-n=1, one can readily check that

Pipi = |]:Di (l = 1727374)7 Piﬂ:bj = @ (l 7&])? (20)

where O is the fourth-order zero tensor. Hence, P; are identified as orthogonal projectors. It follows that the
terms ¢ through a4 are mutually orthogonal, as

6-0,= [Po]- [P0 =6 BPo=0 (i#)) 2l
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where the symmetry [P;], , = [Pi],,, is used. In addition, it is evident that

qst stpq

P+ P, +Ps+ Py =1 (22)

Therefore, by virtue of these projections, the stress space .# is decomposed into the direct sum of four
subspaces, as

S = Sﬂl @D 5”2 %) (§ﬂ3 S5 <(f4 where (gp,* = {T : P,‘T = T}, 1= 1, 2, 3, 4, (23)

Physically, %, through %4 correspond to the spaces of the hydrostatic pressure, the deviatoric fiber ten-
sion, the transverse shear and the in-plane shear, respectively.

4. A multiplicative split of the deformation gradient

The construction of strain measures starts with the introduction of a multiplicative decomposition of the
deformation gradient that factors out the volumetric strain and the fiber stretch. The split is an extension of
the isochoric/volumetric decomposition widely used in the analysis of isotropic hyperelastic solids (Flory,
1961; Ogden, 1984; Simo et al., 1985; Simo and Taylor, 1991). It will be shown that, within the framework
of hyperelasticity, the multiplicative factors correspond naturally (in sense of work-conjugancy) to the
stress decomposition introduced in the previous section.

Let n be the fiber direction in the current configuration, given by the standard formula

1
n=-FN, />=FN-.FN, (24)
A

where / is the stretch of the line element along the fiber direction N, A = /I;. Consider a decomposition of
the deformation gradient in the form

F = J%(ocl + fn ® n)f?, (25)
where J = det F = /I;. From (25),

F=J3(al+fn ® n)'F. (26)
We require that F to be isochoric and stretch-free in the fiber direction, namely
det F=1, |FN||=1. (27)

Making use of Eq. (24) and the relations
(d+pn@n) ' '=c'l=n®@n)+ @+ 'n®n,
det (a1 4 fn ® n) = o*(a + f),
we can write the conditions (27) as
P+ p)=1, a+p=1 (29)

where 1 = J 34, which is an isochoric measure of the fiber stretch. It can be readily found that

ol—

ol

—
W
(=)

=

w=7% p=i-7t

Therefore,

F=[Z(1-non)+7"nenl/iF (31)
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The factor F represents a local motion composed of an isochoric deformation superposed by a simple
compression in the fiber direction such that the ensuing fiber stretch is unity. Further insight into the nature
of F can be gained by examining its rate. Invoking the standard results

.0 .

JV:E~C:ia-d, J=Jtrd, n=Ln—(d-a)n, (32)
where L = FF! is the velocity gradient and d = 1/2(L + L") is the rate of deformation tensor, a straight
forward derivation yields

~ . 1 )

L=FF = L—g(d-l)l —%(d-ﬁ)ﬁ+2(i i 1)[ad — (d - a)a]. (33)
Hence,

~ 1 -~ ~T _3 [}

d=3(L+L ):{[P’4+12[P>3]d:[@d, where P = P, + 7 °Ps. (34)
Recalling the orthogonality of the projectors, one sees

d-1=0, d-a=0, (35)

namely, the spatial rate of F is deviatoric and stretch-free in the fiber direction. As will become evident
shortly afterwards, these conditions imply that the Cauchy stress generated by F is work-conjugate to
the transverse shear and the in-plane shear stress.

5. Constitutive formulation
5.1. Strain invariants

Transversely isotropic strain invariants are constructed with the aid of the multiplicative split introduced
in the previous section. Since J and A can be naturally identified as two strain invariants, it makes sense to
start with the energy function of the form W = W (J, Z, F). Under superposed rigid motion F — QF, J and /
remain invariant while F transforms as F — QF. The classical requirement of invariance under superposed
rigid body motions renders the reduction

w=w(J,.0C), (36)
where C = F'F. From (31),

- - _ -1
C=J3iC+ (i Z—JV)FCN ® NC|. (37)

Evidently, C is a transversely isotropic tensor function of C. Therefore, any invariants in the set (2) gen-
erated by C are transversely isotropic scalar functions of C. However, since

I;(C)=det C=(detF)>’=1, I,C)=C-N® N=FN-FN=1 (38)
only the following three invariants of C are nontrivial and are suitable for basis functions:
{11(C), 1,(C), I5(C)}. (39)

Let {f1, B2, B3} be any three invariants that are in one-to-one correspondence with the nontrivial invar-
iants (39). Combining with J and 4, the invariants

{Jv zv ﬁl? ﬁZ? 53} (40)

furnish a set of basis functions.
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5.2. Orthogonality between stress terms

The proposed invariant formulation enjoys the property that the ensuing stress is automatically decom-
posed into the pressure, the deviatoric fiber tension, and the shear terms. To show this, we start from the
energy form (36). Denoted by ¢ the Cauchy stress, by virtue of the balance of mechanical power we have,

14 oW W :
Jo-d=W=——J1-d+—=/Ja-d+—-C, 41
oJ 04 oC #)
where the rate relations in (32) are utilized. Let ¢ be the stress component generated by C, namely,
J6-d =2 C, we then write

ow ) oW _

=—1+ = G. 42
= tratte (42)
Evidently,
ow JOW _
ale%, 7 azaeyz. (43)
Notice

Z =T . ~TA ~ o~ ~ ~
C=F F+F F=F [2d]F = F 2PdJF,

where (34) is used. It is clear that

oW 0 -
Je-d= —VI/-C W [2[|3’d]F IP[ZF—F } -d Vd, (44)
oC aC oC
where the symmetry of P is used. Therefore
oW -
&:—IP F—F |=>6c9:50Y, 45
J [ aC } S (45)

This proves that the stress term conjugate to C corresponds to a combination of the transverse and the
in-plane shear.

It is possible to construct basis functions f5; such that the stress terms ¢ is further decoupled. As an exam-
ple, consider the following set of invariants

B=C-NoN, pf=trC —C -N@N, f=trC . (46)
EVidently, B = I5(C). Since det C = 1, we identify that 8, = I,(C) and C' 'NoN= K,(C). It follows
that , = K3(C). These invariants therefore carry the geometrical meaning identified before, but applied to

the deformation factor F. We can use the Cayley—Hamilton theorem and the unity conditions (38) to obtain
an alternative expression f3, = trC—C -N ® N. With the aid of (37) and the expression

C'=/7'c'+(1-7)N @ N, (47)
we can write the invariants (46) explicitly as
1, A 1 ., B L J
p = /14C N&®N, p, —JtrC MC N®N, fp5= /ltrC JER (48)

With an energy form

W= W(Jazaﬁlaﬁ27ﬁ3)7 (49)
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the Cauchy stress function is given as

oW . AW 2~ oW _dp.
= 1+Z-"a+= F-LiF".
= T azaJ“J; 98 dC (50)
A straightforward calculation yields,
) 2
FPET — 2 (ba 4 ab— 2(a- bal,
S (s1)
22T = § [2b — 2ba — 2ab + 2(b - a)a — (trb —b-a)(1 — a)].
Here, b = FF" is the (inverse) Finger tensor. Evidently,
Brr _ 2 Ofs g _ 24
2F F =5Ps;bl e ¥ 2F —=F = —MP4/bl € ¥,.
aC /12 3[ ] S 3, aC T 4[ ] € 4

One sees that ff1, f, generate a transverse shear and an in-plane shear, respectively. Consequently, the
stress terms generated by J, 4, 1, > are mutually orthogonal. The stress term by 5 contains both in-plane
and transverse shear terms. This can be verified by direct computation. Using the relations trC~' = trb™",
b '-a=/17and C"'-N®N=,’""a, taking the derivative of 5 with respect to C and push-forward-
ing the result into Eulerian form yields,

ZFZ—%FT = f [(=2b7" + (trb™ —b ™" -a)1+ (3b"' -a—trb ")a)]. (52)
It can be directly verify that
ZF%FT = —2;] P37+ Pub']] € F3 @ .

Hence, the fifth stress term is coupled with the third and fourth stress terms.
In passing, it is noted that the invariants §; and f, are formally equivalent to the following two strain
invariants deduced by Criscione et al. (2001, p. 883)

_ 11, — s I A _ Is
=1 e e ) g = /= -1.
B; = log (2 Th)-l-\/(z TU) )a B 1421

Evidently,

2
e (5 (B 1) v

The last invariant deduced by Criscione registers the angle between the planes of the transverse shear and
the in-plane shear. It is anticipated that such an invariant can be constructed from C. This line of thinking,
however, is not explored here.

6. Projection formulae
Although the energy function is commonly defined in terms of invariants, from the perspective of com-

putation, it is convenient to express the stress collectively in terms C (and J, 7). This situation is similar to
the numerical treatment of isochoric/volumetric split, where the stress contribution from the isochoric
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factor is conveniently computed by means of a deviatoric projection (Simo et al., 1985). A similar procedure
is developed here.
Starting from the energy function (36), introduce the notations
- oW o
S=2"2, %=FSF. (53)
oC

As we have already shown in (42) and (45), the Cauchy stress takes the form
ow . aoaw_ 1
=—14+-—a+-Pz. 54
o TTwmrtIT (54
We are primarily interested in the stress term associated with C. From (54), it is clear that the contribu-
tion can be computed using the following procedure: First, the factor F is employed to compute an auxiliary
stress 7 in the same manner as the Kirchhoff stress is computed from the deformation gradient. Then, the
stress 7 is projected to the appropriate stress space to yield the contribution to the Cauchy stress.
The material tangent tensors can be computed directly with the application of the chain rule. Without
loss of generality, consider the case of decoupled energy function defined by

o

wW=V(C)+UJ)+K(), (55)
with the second Piola Kirchhoff stress given by
oc] /or 1 1
N had ! —1 T | _ !
S = aC (266) +JU(J)C + AK'(A) [AZN ® N 3C } (56)

The referential material tangent tensor is given by the second derivative

o*w
P =43cac
~qT ~ ~ T —_ —_
oC o*r \ |oC o*C 14 _ 04 0l oJ o
= = 4ﬁ = —= 4K” 1) — = 4U”J T~ ~
aC ( acac) ac| T*|acac (ac) K (1) 3¢ © 5t D3¢ © 5¢
L 0% |
+4K' (D 5656 4V ) 380 (57)

The contributions from C appear in the first two terms in the right-hand-side of (57). The first term re-
lates to the second derivative of the energy function. The second term, linear in stress, arises from the non-
linearity of the tensor C. The explicit expressions for the fourth order transformation tensor <G and the
higher order transformation aa(;cc are given in Appendix A.

The Eulerian tangent tensor associated with C retains a more tractable form. Let C be the spatial tangent
tensor related to D by the push-forward relation

1 I R
C=< FDF" <= C™* = jF;FfJD”KLFj;F;.
Let

4. 'V - ~ij 4 ;- ? ~k ~
g OV g CFF _or LR (58)
J oCcoC J 0C,;0Ck,

C:

and denote 7, = 7-n ® n. After a lengthy but straight forward computation, it is shown that the contri-
bution from C (namely, the pushforward of the first two terms in (57)) takes the form
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C=PCP + (tr7 — %) [[m + 1‘3[@3} —[Py(E) ® (1 —a)+ (1—a) ® Py3)]
12007 — D[aR Py(?) + Py(5) Ka] — 22 7[a ® P3(3) + P5(3) © al. (59)

It is clear that once C and 7 are obtained, the tangent tensor can be computed by means of projections
and transformations. This procedure carries over the computational structure developed by Simo et al.
(1985) for the treatment of the isochoric/volumetric decomposition.

7. An example model

To provide some assessments of this constitutive approach, we consider a model with additive energy
function

W(C) = kaexpleli— 17) + 5kl — 1) + 3 ks(B ~2) (60)
with ; and f, defined as in (46). We are primarily interested in assessing the predictability in modeling
materials with distinct characteristics in the fiber tension and in the transverse and in-plane shear. For this
reason, an exponential form is used for the fiber stretch, whereas polynomials are used for the other terms.
The material is assumed to be incompressible, hence the energy function (60) determines the Cauchy stress
to within a hydrostatic pressure. For numerical simulation the model is implemented in the nonlinear finite
element program FEAP originally developed by Taylor (Zienkiewicz and Taylor, 1991). In the finite cle-
ment simulation, a penalty term 1k (J — 1)* is added to the energy function, with k, setting to 10000k5.
The incompressibility constraint is further treated by a mixed formulation for the volume/pressure fields
and an augmented Lagrangian method, as described in Simo and Taylor (1991).

7.1. Uniaxial tension

Consider the uniaxial tension of a block in which the tensile load is applied along one of its axes. Let the
motion be described by x; = 4;X;, i = 1,2,3 where the coordinate X is in the loading direction. In the first
case, consider the fiber aligned in the load direction, so that X, and X3 are in the isotropic plane. Due to
material symmetry, we have 1, = 43 in this motion. A direct computation shows

_2
3

A=200 B=1, py=2.

~ Notably the invariants f§; and f8, are constants. The incompressibility condition 44,43 = 1 further gives
/=2 and A, = A3 = A, 2. The stress function can be derived using (60), (50) and (51). Upon imposing the
incompressibility condition, the stress components are given by

4
o1 = gkzcexp(c(zl — D)4 — 1) +p,

2
Oy = 033 = —gkzcexp(c(il — 1)2)/11()»1 — 1) +p,

where p is the pressure. Using the equilibrium condition o5, = 0 to eliminate the pressure we obtain the
axial stress

o1 = 2kycexp(e(ly — 1)) (4 — 1)

which notably depends only on the first term of the energy function.



6026 J. Lu, L. Zhang | International Journal of Solids and Structures 42 (2005) 6015-6031

If the load is applied at 90° to the fiber, and if we let X, be in the fiber direction (namely [N]=[010]), we

find
B A M
B =1, 5z*i—3+i—l-

In this case the stress components are found to be

1 7 2 (7 Ly EA R
oy = _gkzcexp(c(/uz — 1))l - 1) +?4 (i—;_ﬂ—j) o

2 _ _
Oy = gkzc CXp(C(;Lz — 1)2)/12(12 — 1) +p,

1 - - ki (34 4
78 = _gkzceXp(c(”l a 1)2)/12(12 —-1)- 54 (/1_; _/1_?) +p

where p is the pressure. Eliminating p and the exponential term by the equilibrium conditions ¢, = 633 =0,
we find

A A
g11 :k4<i_/1_j)7

where, given the axial stretch 4, the lateral stretch 43 together with 4, are determined by g5, = g33 = 0 and
the incompressibility condition.

The two tension curves are depicted in Fig. 1. Finite element simulations of these two tests are also con-
ducted. The curves clearly show an exponential behavior for the first case and a nearly linear response in the
second case. In these simulation the following parameters are used:

ky =1.35x 10° KPa, k;=135KPa, ks =135KPa, c=1.

12 T T T T T
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L Finite element results
10 ’ E
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g e / -
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,/
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o
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2+ e ]
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-
a” o ®" e o 9
0 ’.’:/:’" o o ..,? ....0.?.0 .0 I. [ 2 I
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Fig. 1. Uniaxial tension: the axial stress versus the stretch.
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7.2. Inextensible beam

Some peculiar deformations of transversely isotropic solids have been reported in the literature. Pipkin
studied the planar deformation in materials reinforced with inextensible fibers (Pipkin, 1974, 1977). If the
material is also incompressible, the motion, if all possible, may be determined by kinematic analysis alone.
Particularly, if a cantilever beam with fibers parallel to the beam length is loaded transversely as shown in
Fig. 2, the beam deforms by shear rather than by bending, because it can only sustain motions that are
locally a pure shear along the fiber direction. The shear deformation is independent of the length of the
beam and the distance along the beam where the load is applied.

This phenomenon is replicated numerically using the suggested constitutive model. A cantilever beam of
length L = 15 in. height H = 1 in. is subjected to a transverse load P = 5 lbs, applied at 2/3L from the fixed
end. The material is assumed nearly inextensible in the longitudinal direction with the following
parameters:

ky =107 Psi, k3 =25Psi, ky=25Psi, c=1.

The deformed configuration is depicted in Fig. 2. It is evident that the beam undergoes transverse shear
motion except for in the region close to the clamped end and in the transition region near the load. The
portion of beam between the load and the free end remains horizontal with zero shear stress.

Following Pipkin (1974), in the analytical solution we parameterize the local motion in terms of a pure
shear in the form

F=n® N+ (xn+m) ® M,

where N and n are the tangents of the fiber line in the reference and current configurations, M and m are the
corresponding normals, and « is the amount of shear that varies with position. It follows that f; = x> + 1
and f, = 2. Using the energy form (60) and invoking the relation (51);, the transverse shear stress is found
to depend linearly on x, the magnitude of which is given by

T= k3K.

In this case there is an analytical relation relating the deflection of the beam tip to the applied load
(Pipkin, 1974). The force-deflection curve obtained by the finite element analysis is plotted in Fig. 3, and
is found to agree with the theoretical prediction. It appears that the current model allows to sharply single
out the transverse shear mode, and thus to capture the essential feature of the motion.

7.3. Torsion of hollow cylinders

Torsion of hyperelastic cylinders is a classical problem that has been extensively studied. It is known that
hyperelastic cylinders do not sustain pure torsion in general, except for few material models, see Polignone

=h 1

T T T7
I I
I I
I I
Reference con

iguration

N N I |
SSE=
III]‘!

T
T
T
T
Current configuration

Fig. 2. Inextensible cantilever beam under transverse load: deflecting by shearing.
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Fig. 3. Force—deflection curve.
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Fig. 4. Torsion of hollow cylinders with different fiber orientation: (a) fibers in the circumferential direction; (b) fibers in the
longitudinal direction.

and Horgan (1991) and the references therein. For the transversely isotropic material model considered
here, the torsion patterns are expected to be quite different for cylinders with different fiber orientations.
In particular, pure torsion is expected when the material is inextensible in the circumferential direction.
A thin-walled tube with length 5 cm, outside diameter 2 cm and wall thickness 0.1 cm is considered. The
tube is clamped at one end and subjected to a torque at the free end, and is allowed to shorten in the axial
direction. Material parameters are taken to be

k» = 10° KPa, ks =135 KPa, k;=135KPa, c=1.

Two different fiber-orientations are considered. In the first case, the fiber is placed along circumferential
direction, while in the second case the fiber is assumed to be parallel to the cylinder length. The deformed
configurations are depicted in Fig. 4. Clearly, pure torsion type of deformation is observed for the first case.
In contrast, lateral contraction similar to what observed for neo-Hookean solids occurs in the second case.
In addition, substantial amount of longitudinal shortening (due to fiber inextensibility) is observed in this
case.
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8. Concluding remarks
We discussed a constitutive formulation for transversely isotropic hyperelastic solids that may exhibit
drastically different characteristics in different modes of deformation. The formulation is a logical extension
of the isochoric/deviatoric decomposition used in the analysis of isotropic materials. We developed a simple
multiplicative decomposition of deformation gradient, based on which a family of strain invariants that

generate decoupled pressure, fiber tension and shear stresses are deduced. This framework is expected to
be useful in numerical modeling of nearly incompressible and inextensible materials.
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Appendix A. Transformation tensor

In this Appendix we derive the transformation tensor % and its derivative. Starting from (37), we have

- Te e 1 Ao . 2 2 A
[0cC] S_jSJr[mN@N—ZC }(C-S)+[<—?+Z>N®N+ZC
1 X 1 1)\ ¢ .
XF(CN®NC-S)+(j—ﬁ>[SCN®N+N®NCS} (61)
A

for any fixed second order tensor S. Making use of the following identities

FSF' = i, [FSFT 4 (2~ D)P4(FSF") + (7 — 1)(FSF" - a)a},
FSF'a + aFSF" — /3 [z%m(ﬁsﬁ + 272 (FSF" - a)a} :

one can deduce that
F|[ocC]'S|F" = P[FSF|

which gives the formula (45). Moreover, taking derivative of the transformation (61) (assuming S fixed)
yields,

2 215 = 2 [0cEl"
[CecC]'S = 5 [18cC'S]
- 1 Ao 1 A -
= —N&N- —N®N--
S®(2J/1 b2y 2JC)Jr<2J/1 & 2JC)Q{)S
+<—1C S+<6—3>CN ® NC S)N ® N® N@N
497 AR YN
(R | -
—(+CS+—5CN @ NC-S|[NeN® C'+C"' ® N & N]
42 4J i
A & 1 S -1 -1
+(EC-S—mCN®NC-S>[2ﬂCI+C ® C']
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C71

. - 21
+[SCN®N+N®NCS]®[( +—)N®N+

IR YPE 271
2 1 | ~ =
+ K__“LW)N ® N+5-C ‘} ® [SCN ® N+N ® NCS]

+<%4—J%)[S®(N®N)+(N®N)®S]. (63)

Here, o1 1is the pull-back of the Eulerian fourth order identity tensor; in components,
e =1 (" + [c )" [Cc™'1™"). Pushing-forward the right hand side of (63) and collecting
1ds th 1 f d
terms yields the Eulerian form reported in (59).

References

Boehler, J.P., 1979. A simple derivation of representations for non-polynomial constitutive equations in some case of anisotropy.
ZAMM 59, 157-167.

Criscione, J.C., Douglas, A.S., Hunter, W.C., 2001. Physically based strain invariants set for materials exhibiting transversely isotropic
behavior. Journal of Mechanics and Physics of Solids 49, 871-891.

Criscione, J.C., Hunter, W.C., 2003. Kinematics and elasticity framework for materials with two fiber families. Continuum Mechanics
and Thermodynamics 15, 613-628.

Criscione, J.C., McCulloch, A.D., Hunter, W.C., 2002. Constitutive framework optimized for myocardium and other high-strain,
laminar materials with one fiber family. Journal of Mechanics and Physics of Solids 50, 1691-1702.

Flory, P.J., 1961. Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829-838.

Fung, Y.C., 1993. Biomechanics: Mechanical Properties of Living Tissues, second ed. Springer, Berlin.

Holzapfel, G.A., Gasser, T.G., Ogden, R.W., 2000. A new constitutive framework for arterial wall mechanics and a comparative study
of material models. Journal of Elasticity 61, 1-48.

Merodio, J., Ogden, R.W., 2003. Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under
plane deformation. International Journal of Solids and Structures 40, 4707-4727.

Merodio, J., Ogden, R.W., 2005. Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. International
Journal of Non-linear Mechanics 40, 213-227.

Murnaghan, F.D., 1938. The Theory of Group Representations. Johns Hopkins Press, Baltimore.

Ogden, R.W., 1984. Non-linear Elastic Deformations. Ellis Horwood, Chichester.

Pipkin, A.C., 1974. Finite deformations of ideal fiber-reinforced composites. In: Composite MaterialsMechanics of Composite
Materials, Vol. 2. Academic Press, New York, pp. 251-308.

Pipkin, A.C., 1977. Finite deformation in materials reinforced with inextensible cords. In: Rivlin, R. (Ed.), Finite Elasticity, Vol. 27.
ASME-AMD, New York, pp. 91-102.

Polignone, D.A., Horgan, C.O., 1991. Pure torsion of compressible nonlinearly elastic circular cylinders. Quarterly of Applied
Mathematics 49, 591-597.

Schroder, J., Neff, P., 2003. Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions.
International Journal of Solids and Structures 40, 401-445.

Simo, J.C., Taylor, R.L., 1991. Quasi-incompressible finite elasticity in principal stretches. continuum basis and numerical algorithms.
Computer Methods in Applied Mechanics and Engineering 85 (3), 273-310.

Simo, J.C., Taylor, R.L., Pister, K., 1985. Variational and projection methods for the volume constraint in finite deformation elasto-
plasticity. Computer Methods in Applied Mechanics and Engineering 51 (1-3), 177-208.

Smith, G.F., 1971. On isotropic functions of symmetric tensors, skew symmetric tensors and vectors. International Journal of
Engineering Science 9, 899-916.

Spencer, A.J.M., 1982. The formulation of constitutive equations for anisotropic solids. In: Boehler, J. (Ed.), Mechanical Behavior of
Anisotropic Solids. The Hague, Paris and M Nijhoff, editions du CNRS, pp. 2-26.

Spencer, A.J.M., 1992. Plasticity theory for fiber-reinforced composites. Journal of Engineering Mathematics 26 (1), 107-118.

Steigmann, D., 2003. Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Mathematics and Mechanics of
Solids 8, 497-506.

Weiss, J.A., Maker, B.N., Govindjee, S., 1996. Finite element implementation of incompressible, transversely isotropic hyperelasticity.
Computer Methods in Applied Mechanics and Engineering 135, 107-128.

Zheng, Q.S., 1994. Theory of representations for tensor functions—a unified invariant approach to constitutive equations. Applied
Mechanics Review 47 (11), 545-586.



J. Lu, L. Zhang | International Journal of Solids and Structures 42 (2005) 6015-6031 6031

Zheng, Q.S., Spencer, A.J.M., 1993. Tensors which characterize anisotropies. International Journal of Engineering Science 31 (4),
679-693.

Zienkiewicz, O.C., Taylor, R.L., 1991. The Finite Element Method; Dynamic and Non-linearity, fourth ed., vol. 2. McGraw-Hill,
London.



	Physically motivated invariant formulation for transversely isotropic hyperelasticity
	Introduction
	Continuum mechanics foundations
	An additive split of the Cauchy stress
	A multiplicative split of the deformation gradient
	Constitutive formulation
	Strain invariants
	Orthogonality between stress terms

	Projection formulae
	An example model
	Uniaxial tension
	Inextensible beam
	Torsion of hollow cylinders

	Concluding remarks
	Acknowledgement
	Transformation tensor
	References


